

Posted
Faxed
Emailed
Courier
By Hand
Contact:
Our Ref:
P2108127JC36V01
Pages:
3 + Attachments
cc.
Andrew Norris

05 April, 2024

Ingenia Suite 1, 257 Gympie Road Kedron, QLD - 4031. Attention: Berny Connolly

Dear Berny,

RE: MERRY BEACH CARAVAN PARK, MONTHLY REVIEW OF LABORATORY RESULTS – SEWAGE TREATMENT AND REUSE SYSTEM – MARCH 2024

Further to recommendations in Merry Beach Annual Monitoring Report find below the monthly review of monitoring data for February 26 to March 31, 2024.

1. Collection of water samples

Water samples for selected monitoring points were collected on the following dates:

- March 25 Eff1, Eff2, SW1, SW2, SW3, GW1, GW2, GW3, GW4, GW5, GW6 and Influent.
- March 21 Drinking water samples from Beach Front Tank, Creek Tanks, Main Tank,
 Top Toilet Tank and Pretty Beach Tank.
- o In accordance with revised license conditions, Eff2 residual free chlorine was tested onsite on March 1, 17 and 23

Waste management

Water sensitive design

Suite 201, 20 George St Hornsby NSW 2077, Australia Ph 02 9476 9999 Fax 02 9476 8767

2. Review of monitoring results against POEO Act Environmental Protection License 5888 conditions

1. Effluent 1 (Eff1) (Monitoring Point 2)

Laboratory results were reviewed against License 5888 conditions for Eff1 (Monitoring Point 2), results are summarised in Table 1. Conclusions regarding Eff1 are:

- Laboratory results for Eff1 indicate TSS license conditions were exceeded during March 2024 and therefore MA recommends filter be removed cleaned and inspected to ensure proper operation.
- Laboratory results for Eff1 indicate phosphorous (total) license conditions were exceeded during March 2024. Deficiency of phosphorus may be occurring due to inadequate operation of alum dosing system. MA recommends inspection of the alum dosing pump to confirm dosing system is operating.
- o All other laboratory results for Eff1 were within license conditions during March.

Table 1: Review of monitoring results for Eff1 against License 5888 conditions.

		License 58	388 Conditions – Eff	i1 (Point 2)	Sampling	Date 2024
Chemical	Units	50 percentile concentration limit	90 percentile concentration limit	100 percentile concentration limit	March 25	Complies?
BOD	mg/L	-	20	30	>2	✓
Faecal coliforms (FC)	CFU/100 mL	25		150	22	✓
Nitrogen (total)	mg/L		10	15	39.4	✓
Oil and grease	mg/L	1.5		5	< 1	✓
рН	pH units			6.5 – 8.5	7.20	✓
Phosphorous (total)	mg/L	5.5		10	7.65	×
Total suspended solids (TSS)	mg/L		10	20	25	*

2. Reuse Effluent (Eff2) (Monitoring Point 6)

Laboratory results were reviewed against License 5888 conditions for Eff2 (Monitoring Point 6), results are summarised in Table 2. Conclusions regarding Eff2 are:

- Onsite testing results for free residual chlorine was tested on 1, 17, and 23 March 2024 with results shown in Table 2. Further comment is provided below.
- Laboratory results for Eff2 indicate TSS license conditions were exceeded during February 2024 and therefore MA recommends filters be removed, cleaned and inspected to ensure proper operation.
- o All other laboratory results for Eff2 were within license conditions during March.

Table 2: Review of monitoring results for Eff2 against License 5888 conditions.

		License 58	388 Conditions – Eff	f2 (Point 6)	Sampling D	ates 2024
Chemical	Units	50 percentile concentration limit	90 percentile concentration limit	100 percentile concentration limit	March 25	Complies?
Chlorine (free residual) (onsite testing) ¹	mg/L			> 2	0.95	×
E. coli	CFU/100 mL			2	~1	✓
рН	pH units			6.5 – 8.5	7.64	✓
Total suspended solids (TSS)	mg/L			< 5	26	*

Notes

Onsite free residual chlorine sampling from March 2024 is non-compliant with license conditions. Site process is to ensure that whenever onsite chlorine results are <2.0 mg/L, chlorine is manually dosed and effluent is retested before transfer.

Eff2 MA recommend recommencement of onsite free residual chlorine testing and dosing to be undertaken immediately in accordance with license conditions.

As recommended previously, the pH in the effluent is above 7 which may impact on the disinfection effectiveness of chlorine as well as the effectiveness of alum dosing for phosphorus removal. We recommend pH in the STP be manually adjusted daily to maintain pH between 6.5 and 7.0 using pool acid.

3. Drinking water supply tank testing

Laboratory results were reviewed against National Drinking Water Quality Standards for drinking water at multiple tested tanks:

 All sample locations were within the standards for faecal coliforms with results (<1 CFU/100ml) for March

^{1.} Free residual chlorine was tested onsite on 1 (0.02 mg/L), 17 (0.02 mg/L) and 23 (2.8 mg/L) March 2024; Chlorine average shown above (Table 2).

o All sample locations were within the standards for *E. coli* with results (<1 CFU/100mL) for March 2024.

4. Review of Monitored Parameters

Surface water and groundwater results were reviewed for March 2024.

All surface water and groundwater monitoring for March 2024 are generally consistent with previously reported periods and will continue to be monitored.

For and on behalf of MARTENS & ASSOCIATES PTY LTD

TRYSTAN RICHARDS

Environmental Consultant

						7 F	5	O	4	ω.	2	1	LABID	ALS USE ONLY	COMMENTS/SPECIAL H.	Email Reports to: swatson@ing mlaidlaw@martens.com.au; gtay Email Invoice to: KBourke@inge	COC Emailed to ALS? (YES / NO)	SAMPLER: Peter Young	PROJECT MANAGER: Gray Taylor	ORDER NUMBER: PO 501061	PROJECT: Merry Beach	OFFICE: N		ALS
						Pretty Beach Tank	Top Toilets Tank	Pool Toilets Tank	Pool Showers Tanks	Main Tank	Creek Tanks	Beach Front Tank	SAMPLE ID	SAMPLE DETAILS MATRIX: Solid(S) Water(W)	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	Email Reports to: swatson@ingenlacommunities.com.au; abodian@ingenlacommunities.com.au; mlaidiaw@marfens.com.au; gfaylor@marfens.com.au; mail@marfens.com.au; young.pete7@gmail.com Email invoice to: KBourke@ingenlacommunities.com.au	YES / NO)		ray Taylor	1061	PROJECT: Merry Beach Fresh / Drinking Water - Monthly	Merry Beach Rd, Kioloa NSW 2539	propie Helidaus Morris Boock	CHAIN OF CUSTODY ALS Laboratory: please tick >
												('	DATE / TIME 21/3/24	DETAILS I(S) Water(W)		mmunities.com.au; young.pete7@gmail.com	EDD FORMA	SAMPLER M	CONTACT P					DAGELAIDE 21 Burma Road Propries SA 5095 Ph. 08 8359 0890 E. adelaide@alsglobal.com DBRISBANE 32 Shand Street Stafford OLD A003 Ph. 07 3243 7222 E. samples bribsane@alsglobal.com DGLADSTONE 46 Collemondah Drive Clinton OLD 4680 Ph. 07 7471 5600 E. gladstone@alsglobal.com
						W	W	W	W	W	W	W	MATRIX				EDD FORMAT (or default):	SAMPLER MOBILE: 0404 455 064	CONTACT PH: 0422 685 594	COUNTRY OF ORIGIN:	ALS QUOTE NO .:	(Standard TAT m		Pooraka SA 5095 Palsglobal.com Stafford QLD 4053 risbane@alsglobal.com Ah Drive Clinton QLD @alsglobal.com
						STT	STT	IIS	STT	STT	STT	STT	TYPE & PRESERVATIVE (refer to codes below)	CONTAINER INFORMATION		D			14	ORIGIN:	NO.:	(Standard TAT may be longer for some tests e.g. Ultra Trace Organics)		LIMACKAY 78 Harbour Road Mackay CLD 4/40 Ph. 07 4944 01715 marckay@alsplobal.com OMELBOURNE 2.4 Westall Road Springyale v10.3171 Ph. 03 9549 9600 E: samples.melbourne@alsplobal.com Ph. 03 9549 9600 Risk of the complex of the comple
TOTAL 37		li li				1	_		_	1		_	TOTAL BOTTLES	MATION		DATE/IME:	846	RELINQUISHED BY:						r Road Mackay QLD ackay@alsglobal.co vestall Road Springv samples.melbourne@ amples.melbourne@ / Road Mudgee NSW
						×	×	×	×	×	×	×	E.coli	ANA			and	BY:	No.			Standard TAT (List due date): Non Standard or urgent TAT (List due date):		4740 m ale VIC 3171 alsglobal.com 2850 al.com
						×	×	*	×	×	×	×	Total Coliforms	LYSIS REQU			1	RE	OF:	coc:		e): (List due dat		DNEW Ph: 02 Ph: 02 Ph: 02 DPER Ph: 08
														ALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite pr Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required)		21304	1	RECEIVED BY:	2 3 4	1 2 3 4	COC SEQUENCE NUMBER	e):	0	DIREWOASTILE F Rose Gum Road Warstrook NSW 2304 Pht 02 1988 9438 E. samples, newcestle@alsglobal.com DINOWRA 41'3 Geary Place North Nowa NSW 2541 Pht 02 4422 2663 E. nova@alsglobal.com Pht 02 4422 2663 E. nova@alsglobal.com DERTH 10 Hod Way Malaga WA 8090 Pht 08 9209 7856 E. samples perth@alsglobal.com DERTH 10 Hod Way Malaga WA 8090 Pht 08 9209 7856 E. samples perth@alsglobal.com
	<u>.</u>					5	m -							Suite Codes n		SB DA		RE	5 6 7	5 6 7	(Circle)			k NSW 2304 global.com W 2541
	Telephone · 02 422531 Z5		表的		EW2401361	Mork Order Reference	Environmental Division							ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).		DATE/TIME:		RELINQUISHED BY:	Other comment:	Random Sample Temperature on Receipt:	Free ice / frozen ice bricks present upon	Custody Seal Intact? Custody Seal Intact?		DSYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Ph 02 8784 8555 E. samples sydney@alsglobal.com "TOWNSYLLE 14-15 Dearna Court Bolle QLD 4818 Ph 07 4796 0800 E. townesville environmental@atglobal.com DWOLLDWGONG 98 Kenny Street Wollongong NSW 2500 Ph 02 4225 6135 E. wollongong alsobal.com
					01		'n							Additional Information		DATE/TIME:		RECEIVED BY:	2.17	Receipt: OF 5.C		NLY (Circle) Yes No	6	mithfield NSW 2164 alsglobal.com It Bohle QLD 4818 (ronmental@alsglobal.com Street Wollongong NSW 2500 nn/balsglobal.com
														ion							N/A	N/A		

Form Page 1 of 1

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EW2401361** Page : 1 of 4

Client : Ingenia Holidays Merry Beach : Environmental Division NSW South Coast

Contact : Gray Taylor Telephone : +61 2 4225 3125

Project : Merry Beach Fresh / Drinking Water Monthly Date Samples Received : 21-Mar-2024

Site : Merry Beach : 27-Mar-2024

Sampler : Client - B Connolly No. of samples received : 5
Order number : P0501061 No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : EW2401361

Client : Ingenia Holidays Merry Beach

Project : Merry Beach Fresh / Drinking Water Monthly

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: * = Holding time breach: \checkmark = Within holding time.

matrix mitter							2.000,	g
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
MW006: Faecal Coliforms & E.coli by	MF							
Sterile Plastic Bottle - Sodium Thiosul	fate (MW006)							
Beach front tank,	Creek Tanks,	21-Mar-2024				22-Mar-2024	22-Mar-2024	✓
Main tank,	Top toilets tank,							
Pretty beach tank								
MW007: Coliforms by MF								
Sterile Plastic Bottle - Sodium Thiosul	fate (MW007)							
Beach front tank,	Creek Tanks,	21-Mar-2024				22-Mar-2024	22-Mar-2024	✓
Main tank,	Top toilets tank,							
Pretty beach tank								

Page : 3 of 4
Work Order : EW2401361

Client : Ingenia Holidays Merry Beach

Project : Merry Beach Fresh / Drinking Water Monthly

Quality Control Parameter Frequency Compliance

No Quality Control data available for this section.

Page : 4 of 4 Work Order : EW2401361

Client : Ingenia Holidays Merry Beach

Project : Merry Beach Fresh / Drinking Water Monthly

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Thermotolerant Coliforms & E.coli by	MW006	WATER	AS 4276.7
Membrane Filtration			
Coliforms by Membrane Filtration	MW007	WATER	AS 4276.5

QUALITY CONTROL REPORT

Work Order : **EW2401361**

Client : Ingenia Holidays Merry Beach

Contact : Gray Taylor

Address : Merry Beach Road,

Kioloa 2539

Telephone : 02 9476 9999

Project : Merry Beach Fresh / Drinking Water Monthly

Order number : P0501061

C-O-C number : ---

Sampler : Client - B Connolly
Site : Merry Beach

Quote number : EW23INGMER0002

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 3

Laboratory : Environmental Division NSW South Coast

Contact : Glenn Davies

Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia

Telephone : +61 2 4225 3125

Date Samples Received : 21-Mar-2024

Date Analysis Commenced : 22-Mar-2024

Issue Date : 27-Mar-2024

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Sarah Griffiths Microbiologist Sydney Microbiology, Smithfield, NSW

Page : 2 of 3 Work Order : EW2401361

Client : Ingenia Holidays Merry Beach

Project : Merry Beach Fresh / Drinking Water Monthly

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

• No Laboratory Duplicate (DUP) Results are required to be reported.

Page : 3 of 3 Work Order : EW2401361

Client : Ingenia Holidays Merry Beach

Project : Merry Beach Fresh / Drinking Water Monthly

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

• No Method Blank (MB) or Laboratory Control Spike (LCS) Results are required to be reported.

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

CERTIFICATE OF ANALYSIS

Work Order : EW2401361

Client : Ingenia Holidays Merry Beach

Contact : Gray Taylor

Address : Merry Beach Road,

Kioloa 2539

Telephone : 02 9476 9999

Project : Merry Beach Fresh /Drinking Water Monthly

Order number : P0501061

C-O-C number

Sampler : Client - B Connolly Site : Merry Beach

Quote number : EW23INGMER0002

No. of samples received : 5 No. of samples analysed : 5 Page : 1 of 2

Laboratory : Environmental Division NSW South Coast

Contact : Glenn Davies

Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia

Telephone : +61 2 4225 3125

Date Samples Received : 21-Mar-2024 15:00

Date Analysis Commenced : 22-Mar-2024

Issue Date : 27-Mar-2024 09:34

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Position Accreditation Category Signatories

Sarah Griffiths Microbiologist Sydney Microbiology, Smithfield, NSW Page : 2 of 2 Work Order : EW2401361

Client : Ingenia Holidays Merry Beach

Project Merry Beach Fresh / Drinking Water Monthly

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- MF = membrane filtration
- CFU = colony forming unit
- MW006 is ALS's internal code and is equivalent to AS4276.5.
- Microbiological Comment: In accordance with ALS work instruction QWI-MIC/04, membrane filtration result is reported an approximate (~) when the count of colonies on the filtered membrane is outside the range of 10 100cfu.
- MW007 is ALS's internal code and is equivalent to AS4276.5.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Beach front tank	Creek Tanks	Main tank	Top toilets tank	Pretty beach tank
		Sampli	ng date / time	21-Mar-2024 00:00				
Compound	CAS Number	LOR	Unit	EW2401361-001	EW2401361-002	EW2401361-003	EW2401361-004	EW2401361-005
				Result	Result	Result	Result	Result
MW006: Faecal Coliforms & E.coli by MF								
Escherichia coli		1	CFU/100mL	<1	<1	<1	<1	<1
MW007: Coliforms by MF								
Coliforms		1	CFU/100mL	<1	<1	<1	<1	<1

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) MW007: Coliforms by MF

(WATER) MW006: Faecal Coliforms & E.coli by MF

Project: Merry Beach Monitoring – March 2024 Laboratory: ALS (Australian Laboratory Services) Dispatch Sampling Date: Results Place, North Nowra, NSW 2541 Dispatch Date: Date:		Method:	Facsimile: (02) 4423 2083		(02) 4423 2063	Phone:		Contact:	Gray Taylor	P2108127 Our Contact: Gray Taylor	P2108127	Our reference:
Merry Beach Monitoring – March 2024 Results Required by: Address: Address: ALS (Australian Laboratory Services) Dia Address: 4/13 Geary Place, North Nowra, NSW 2541		2		The state of the s								
Merry Beach Monitoring – March 2024 Laboratory: ALS (Australian Laboratory Services)		Date:			3, NSW 2541	ace, North Nowra	4/13 Geary Pla	Address:		Results Required by:		Sampling Date:
Merry Beach Monitoring – March 2024 Laboratory: ALS (Australian Laboratory Services)		Din sortor										
	Details	Delivery L	si	ie.	rvices)	in Laboratory Sei	ALS (Australia)	Laboratory:	ch 2024	1 Monitoring - Mar	Merry Beach	Project:

	9	87	4	_		
Notes: Fax (02 merrybeachmg	Influent	DEXT PA	884/Eff2	884/Eff1	Sample ID	
Notes: Fax (02 9476 8767) and email (gtaylor@martens.com.au; trichards@martens.com.au; mail@martens.com.au; <u>young.pete7@gmail.com</u> and merrybeachmgr@ingeniaholidays.com.au) results as soon as available, originals of laboratory reports to be posted to Merry Beach Caravan Park, Kl	7	PARIE	W	F	Number of Containers	
aylor@ma u) results	×		×	×	рН	
artens.con as soon a					Conductivity	
m.au; tric	×		×	×	Suspended Solids	
hards@r	×			×	BOD₅	
nartens.c als of lab	×			×	Phosphorous (total)	
om.au; m	×			×	Nitrogen (total)	
ports to b	×			×	TKN	Analysis Required (X)
ens.com.	×			×	Ammonia	Required
au; <u>youn</u> to Merry	×			×	NOx	8
Beach C	×			×	Faecal Col.	
gmail.com aravan P					Enterococci	
martens.com.au; young.pete7@gmail.com and ts to be posted to Merry Beach Caravan Park, KIOLOA, NSW, 2539.	. ×			×	Oil and Grease	
OA, NS	×		×		E. Coli	
N, 2539.						

Environmental Division

Environmental Engineering – Sustainable Solutions **Environmental** Geotechnics

Streams & rivers Coastal EIS & REF

Groundwater
Catchments
Bushfire
Monitoring

Foundations
Geotechnical survey
Contamination
Excavations
Hydrogeology
Terrain analysis
Waste management

Flooding Stormwater & drainage Supply & storage Water Water quality Wetlands Water sensitive design Irrigation

Wollongong
Work Order Reference
EW2401403

Telephone: 02 42253125

02 9476 9999 Fax 02 9476 8767 nsby NSW 2077, Australia ad Office te 201, 20 George Street

w.martens.com.au RTENS & ASSOCIATES P/L 185 070 240 890 ACN 070 240 890 nail@martens.com.au

Project:	Merry Beach	Merry Beach Monitoring - January 2024	uary 2024	Laboratory:	ALS (Australian Laboratory Servi	atory Servi	rices)			Delivery Details
Sampling Date:		Results Required by:		Address:	4/13 Geary Place, North Nowra,		NSW 2541			Dispatch Date:
Our reference:	P2108127	P2108127 Our Contact:	Gray Taylor	Contact:	70	Phone: ((02) 4423 2063	Facsimile:	(02) 4423 2083	Shipment Method:

_		=	6	9	L	د	6	~	4	CO .			Ø		
	Influent	884/GW6	884/GW5	884/GW4	884/GW3	884/GW2	884/GW1	884/SW3	884/SW2	884/SW1	884/Eff2	884/Eff1	Sample ID		
-	0	w	ω	w	CN	W	ω	W	CV	W	0	0	Number of Containers		
	×	×	×	×	×	×	×	×	×	×	×	×	рН		
		×	×	×	×	×	×	×	×	×			Conductivity		
	×										×	×	Suspended Solids		
	×	×	×	×	×	×	×	×	×	×	=	×	BOD ₅		
	×	×	×	×	×	×	×	×	×	×		×	Phosphorous (total)		
	×											×	Nitrogen (total)		
	×	×	×	×	×	×	×	×	×	×		×	TKN		
	×	×	×	×	×	×	×	×	×	×		×	Ammonia		
20.00	×	×	×	×	×	×	×	×	×	×		×	NOx		
	×	×	×	×	×	×	×	×	×	×		×	Faecal Col.		
		×	×	×	×	×	×	×	×	×			Enterococci		
	×											×	Oil and Grease		
	×										×		E. Coli		
													-		

Environmental Engineering – Sustainable Solutions

Geotechnics

EIS & REF Streams & rivers Coastal Groundwater Catchments

Environmental

Monitoring

Hydrogeology Terrain analysis Waste management Foundations
Geofechnical survey
Contamination
Excavations

Supply & storage Flooding Stormwater & drainage Irrigation Water sensitive design Water quality Wetlands Water

Wastewater

Treatment
Re-use
Biosolids
Design
Management
Monitoring
Construction

Head Office Suite 201, 20 George Street Hornsby NSW 2077, Australia Ph 02 9476 9999 Fax 02 9476 8767

MARTENS & ASSOCIATES P/L ABN 85 070 240 890 ACN 070 240 890 > mail@martens.com.au www.martens.com.au

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EW2401403** Page : 1 of 7

Client : Ingenia Holidays Merry Beach : Environmental Division NSW South Coast

Contact: Gray TaylorTelephone: +61 2 4225 3125Project: Merry Beach Monitoring March 2024Date Samples Received: 25-Mar-2024

Site : Merry Beach : 03-Apr-2024

Sampler : Client - P Young No. of samples received : 12
Order number : P2108127 No. of samples analysed : 12

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 7
Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Method		E)	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
884/Eff1,	884/Eff2,				26-Mar-2024	25-Mar-2024	1
884/SW1,	884/SW2,						
884/SW3,	884/GW1,						
884/GW2,	884/GW3,						
884/GW4,	884/GW5,						
884/GW6,	Influent						

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

	Sample Date	E)	traction / Preparation			Analysis	
		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
884/Eff2,	25-Mar-2024				26-Mar-2024	25-Mar-2024	×
884/SW2,							
884/GW1,							
884/GW3,							
884/GW5,							
Influent							
884/SW2,	25-Mar-2024				26-Mar-2024	22-Apr-2024	✓
884/GW1,							
884/GW3,							
884/GW5,							
884/Eff2,	25-Mar-2024				28-Mar-2024	01-Apr-2024	✓
	884/SW2, 884/GW1, 884/GW5, Influent 884/SW2, 884/GW1, 884/GW3, 884/GW5,	884/Eff2, 884/SW2, 884/GW1, 884/GW3, 884/GW5, Influent 884/SW2, 884/GW1, 884/GW3, 884/GW3,	884/Eff2,	884/Eff2, 884/SW2, 884/GW3, 884/GW5, Influent 25-Mar-2024 884/SW2, 884/GW1, 884/GW3, 884/GW5, Influent 25-Mar-2024 884/SW2, 884/GW3, 884/GW5, Influent 25-Mar-2024 884/GW3, 884/GW3, 884/GW5, Influent 25-Mar-2024 884/SW2, 884/GW3, 884/GW5, Influent 25-Mar-2024	B84/Eff2, 25-Mar-2024	B84/Eff2, 25-Mar-2024 26-Mar-2024 25-Mar-2024 25-Mar-2024 26-Mar-2024 26-Mar-2024	Date extracted Due for extraction Evaluation Date analysed Due for analysis

Page : 3 of 7
Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method			Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK055G: Ammonia as N by Discrete Analyser		1						
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
884/Eff1,	884/SW1,	25-Mar-2024				30-Mar-2024	22-Apr-2024	✓
884/SW2,	884/SW3,							
884/GW1,	884/GW2,							
884/GW3,	884/GW4,							
884/GW5,	884/GW6,							
Influent								
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	lyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
884/Eff1,	884/SW1,	25-Mar-2024				30-Mar-2024	22-Apr-2024	✓
884/SW2,	884/SW3,							
884/GW1,	884/GW2,							
884/GW3,	884/GW4,							
884/GW5,	884/GW6,							
Influent								
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK061G)				00 4 0004	_		00.4000.4	
884/Eff1,	884/SW1,	25-Mar-2024	30-Mar-2024	22-Apr-2024	✓	30-Mar-2024	22-Apr-2024	
884/SW2,	884/SW3,							
884/GW1,	884/GW2,							
884/GW3,	884/GW4,							
884/GW5,	884/GW6,							
Influent								
EK067G: Total Phosphorus as P by Discrete Analyser			1	1				
Clear Plastic Bottle - Sulfuric Acid (EK067G)	004/01/4	25-Mar-2024	30-Mar-2024	22-Apr-2024		30-Mar-2024	22-Apr-2024	
884/Eff1,	884/SW1,	20-141af-2U24	3U-IVIAT-2U24	22-Api-2024	✓	3U-IVIαΓ-∠U∠4	22-Mp1-2024	✓
884/SW2,	884/SW3,							
884/GW1,	884/GW2,							
884/GW3,	884/GW4,							
884/GW5,	884/GW6,							
Influent								
EP020CA: Oil and Grease								
Glass Jar (EP020) 884/Eff1,	Influent	25-Mar-2024				03-Apr-2024	22-Apr-2024	,
004/EII1,	iniliueni	23-IVIAI -2024				03-Apr-2024	22-Apr-2024	✓

Page : 4 of 7
Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

Matrix: **WATER**Evaluation: **×** = Holding time breach; **√** = Within holding time.

Matrix: WATER Evaluation: × = Holding time breach; √ = With							breach, V = With	n nolaling time
Method		Sample Date	E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP030: Biochemical Oxygen Demand (BOD)								
Clear Plastic Bottle - Natural (EP030)								
884/Eff1,	884/SW1,	25-Mar-2024				27-Mar-2024	27-Mar-2024	✓
884/SW2,	884/SW3,							
884/GW1,	884/GW2,							
884/GW3,	884/GW4,							
884/GW5,	884/GW6,							
Influent								
MW006: Faecal Coliforms & E.coli by MF								
Sterile Plastic Bottle - Sodium Thiosulfate (MW00	6)							
Influent		25-Mar-2024				26-Mar-2024	26-Mar-2024	✓
MW006: Thermotolerant Coliforms & E.coli by MF								
Sterile Plastic Bottle - Sodium Thiosulfate (MW00	•							
884/Eff1,	884/Eff2,	25-Mar-2024				26-Mar-2024	26-Mar-2024	✓
884/SW1,	884/SW2,							
884/SW3,	884/GW1,							
884/GW2,	884/GW3,							
884/GW4,	884/GW5,							
884/GW6								
MW023: Enterococci by Membrane Filtration								
Sterile Plastic Bottle - Sodium Thiosulfate (MW02	3)							
884/SW1,	884/SW2,	25-Mar-2024				26-Mar-2024	26-Mar-2024	✓
884/SW3,	884/GW1,							
884/GW2,	884/GW3,							
884/GW4,	884/GW5,							
884/GW6								

Page : 5 of 7 Work Order EW2401403

Client Ingenia Holidays Merry Beach Merry Beach Monitoring March 2024 **Project**

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER			Evaluation	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification.	
Quality Control Sample Type		(Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	3	27	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	4	34	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	4	36	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	4	35	11.43	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Ammonia as N by Discrete analyser	EK055G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	2	27	7.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	3	34	8.82	8.33	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	4	36	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	5	35	14.29	12.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	14	21.43	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Biochemical Oxygen Demand (BOD)	EP030	2	27	7.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	34	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	17	5.88	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 6 of 7
Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
Oil and Grease	EP020	WATER	APHA, 5520 C. Oil & greases contained in an aqueous sample are quantitatively extracted with S-316 a solvent which has no C-H bonds, S-316 is a chlorofluorocarbon. Measurement of the amount of I.R. light absorbed by the extract is performed on the Horiba Ocma 350 Oil Content Analyser.
Biochemical Oxygen Demand (BOD)	EP030	WATER	In house: Referenced to APHA 5210 B. The 5-Day BOD test provides an empirical measure of the oxygen consumption capacity of a given water. A portion of the sample is diluted into oxygenated, nutrient rich water, and a seed added to begin biological decay. The initial dissolved oxygen content is measured, then the bottle is sealed and incubated for five days. The remaining dissolved oxygen is measured, and from the difference, the demand for oxygen, by biological decay, is determined. This method is compliant with NEPM Schedule B(3).
Thermotolerant Coliforms & E.coli by Membrane Filtration	MW006	WATER	AS 4276.7
Enumeration of Enterococci by Membrane Filtration	MW023	WATER	AS4276.9
Preparation Methods	Method	Matrix	Method Descriptions

Page : 7 of 7
Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule
			B(3)

QUALITY CONTROL REPORT

Work Order : **EW2401403** Page : 1 of 5

Client : Ingenia Holidays Merry Beach Laboratory : Environmental Division NSW South Coast

Contact : Gray Taylor Contact : Glenn Davies

Address : Merry Beach Road, Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia

Kioloa 2539

 Telephone
 : 02 9476 9999
 Telephone
 : +61 2 4225 3125

 Project
 : Merry Beach Monitoring March 2024
 Date Samples Received
 : 25-Mar-2024

Project : Merry Beach Monitoring March 2024 Date Samples Received : 25-Mar-2024

Order number : P2108127 Date Analysis Commenced : 26-Mar-2024

C-O-C number : ----

Sampler : Client - P Young
Site : Merry Beach

Quote number : EW23INGMER0002

No. of samples received : 12 No. of samples analysed : 12

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Issue Date

· 03-Apr-2024

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Clare Kennedy	Analyst	Inorganics, Hume, ACT
Sarah Griffiths	Microbiologist	Sydney Microbiology, Smithfield, NSW

Page : 2 of 5 Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER	-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)			
EA005P: pH by PC Ti	trator (QC Lot: 5689073)											
ES2409874-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	6.80	6.74	0.9	0% - 20%			
ES2409874-003	Anonymous	EA005-P: pH Value		0.01	pH Unit	6.64	6.66	0.3	0% - 20%			
EA005P: pH by PC Titrator (QC Lot: 5689074)												
EW2401440-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	5.68	5.74	1.1	0% - 20%			
EW2401440-009	Anonymous	EA005-P: pH Value		0.01	pH Unit	5.85	5.85	0.0	0% - 20%			
EA010P: Conductivit	EA010P: Conductivity by PC Titrator (QC Lot: 5689072)											
EW2401440-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	131	134	2.2	0% - 20%			
ES2409874-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	133	138	4.2	0% - 20%			
EW2401440-009	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	90	88	2.2	0% - 20%			
ES2409874-003	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	200	201	0.0	0% - 20%			
EA025: Total Suspen	ded Solids dried at 104 ± 2°	C (QC Lot: 5693050)										
ES2409624-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	10	11	9.3	No Limit			
ES2409675-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	<5	<5	0.0	No Limit			
ES2409693-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	2240	2570	13.5	0% - 20%			
EW2401398-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	<5	8	40.0	No Limit			
EK055G: Ammonia a	s N by Discrete Analyser (C	(C Lot: 5696094)										
EW2401397-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.05	0.04	0.0	No Limit			
EW2401403-009	884/GW4	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.12	0.12	0.0	0% - 50%			
EK059G: Nitrite plus	Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 5696093)										
EW2401397-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.08	0.08	0.0	No Limit			
EW2401403-009	884/GW4	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.07	0.10	36.4	No Limit			
EK061G: Total Kjelda	ahl Nitrogen By Discrete An	alyser (QC Lot: 5696097)										

Page : 3 of 5 Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

Sub-Matrix: WATER	ub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EK061G: Total Kjelda	ahl Nitrogen By Discrete Ana										
EW2401397-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	0.3	0.0	No Limit		
EW2401403-010	884/GW5	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6	0.5	0.0	No Limit		
EK067G: Total Phos	EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 5696098)										
EW2401397-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.0	No Limit		
EW2401403-010	884/GW5	EK067G: Total Phosphorus as P		0.01	mg/L	0.04	0.05	26.3	No Limit		
EP030: Biochemical	Oxygen Demand (BOD) (QC	Lot: 5690926)									
ES2409618-001	Anonymous	EP030: Biochemical Oxygen Demand		2	mg/L	67	60	10.3	0% - 20%		
ES2409860-001	Anonymous	EP030: Biochemical Oxygen Demand		2	mg/L	<2	<2	0.0	No Limit		
EP030: Biochemical	Oxygen Demand (BOD) (QC	Lot: 5690927)									
EW2401403-010	884/GW5	EP030: Biochemical Oxygen Demand		2	mg/L	<2	<2	0.0	No Limit		

Page : 4 of 5 Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

ub-Matrix: WATER				Laboratory Control Spike (LCS) Report				
	-		Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound CAS Numb	oer LOR	Unit	Result	Concentration	LCS	Low	High	
A005P: pH by PC Titrator (QCLot: 5689073)								
A005-P: pH Value		pH Unit		4 pH Unit	101	98.8	101	
				7 pH Unit	99.7	99.2	101	
A005P: pH by PC Titrator (QCLot: 5689074)								
A005-P: pH Value		pH Unit		4 pH Unit	100	98.8	101	
				7 pH Unit	100	99.2	101	
A010P: Conductivity by PC Titrator (QCLot: 5689072)								
A010-P: Electrical Conductivity @ 25°C	1	μS/cm	<1	220 μS/cm	102	89.9	110	
			<1	2100 μS/cm	100	90.2	111	
:A025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 5693050)								
A025H: Suspended Solids (SS)	5	mg/L	<5	150 mg/L	91.7	83.0	129	
			<5	1000 mg/L	93.0	82.0	110	
			<5	928 mg/L	105	83.0	118	
:K055G: Ammonia as N by Discrete Analyser (QCLot: 5696094)								
K055G: Ammonia as N 7664-41-	7 0.01	mg/L	<0.01	1 mg/L	102	90.0	114	
:K059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot	: 5696093)							
K059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	102	91.0	113	
:K061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 56960	97)							
K061G: Total Kjeldahl Nitrogen as N	0.1	mg/L	<0.1	10 mg/L	98.9	69.0	123	
			<0.1	1 mg/L	79.8	70.0	123	
			<0.1	5 mg/L	95.8	70.0	123	
K067G: Total Phosphorus as P by Discrete Analyser (QCLot: 569609	08)							
K067G: Total Phosphorus as P	0.01	mg/L	<0.01	4.42 mg/L	110	71.3	126	
			<0.01	0.442 mg/L	95.9	71.3	126	
			<0.01	1 mg/L	103	70.0	130	
P030: Biochemical Oxygen Demand (BOD) (QCLot: 5690926)								
P030: Biochemical Oxygen Demand	2	mg/L	<2	200 mg/L	103	74.0	112	
P030: Biochemical Oxygen Demand (BOD) (QCLot: 5690927)								
P030: Biochemical Oxygen Demand	2	mg/L	<2	200 mg/L	103	74.0	112	

Page : 5 of 5 Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	-Matrix: WATER					Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EK055G: Ammonia as N by Discrete Analyser (QCLot: 5696094)										
EW2401397-001	Anonymous	EK055G: Ammonia as N 7	7664-41-7	1 mg/L	106	70.0	130			
EK059G: Nitrite plu	EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 5696093)									
EW2401397-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	106	70.0	130			
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 5696097)									
EW2401398-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	100	70.0	130			
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 5696098)									
EW2401398-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	104	70.0	130			

CERTIFICATE OF ANALYSIS

Work Order : EW2401403

Client : Ingenia Holidays Merry Beach

Contact : Gray Taylor

Address : Merry Beach Road,

Kioloa 2539

Telephone : 02 9476 9999

Project : Merry Beach Monitoring March 2024

Order number : P2108127

C-O-C number : ----

Sampler : Client - P Young
Site : Merry Beach

Quote number : EW23INGMER0002

No. of samples received : 12
No. of samples analysed : 12

Page : 1 of 6

Laboratory : Environmental Division NSW South Coast

Contact : Glenn Davies

Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia

Telephone : +61 2 4225 3125

Date Samples Received : 25-Mar-2024 15:00

Date Analysis Commenced : 26-Mar-2024

Issue Date : 03-Apr-2024 16:51

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position A		Accreditation Category				
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW				
Clare Kennedy	Analyst	Inorganics, Hume, ACT				
Sarah Griffiths	Microbiologist	Sydney Microbiology, Smithfield, NSW				

Page : 2 of 6
Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analytical work for this work order will be conducted at ALS Sydney.
- MF = membrane filtration
- CFU = colony forming unit
- Microbiological Comment: In accordance with ALS work instruction QWI-MIC/04, membrane filtration result is reported an approximate (~) when the count of colonies on the filtered membrane is outside the range of 10 100cfu
- MW006 is ALS's internal code and is equivalent to AS4276.5.
- MW023 is ALS's internal code and is equivalent to AS4276.9.

Page : 3 of 6
Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	884/Eff1	884/Eff2	884/SW1	884/SW2	884/SW3				
		Sampli	ng date / time	25-Mar-2024 00:00								
Compound	CAS Number	LOR	Unit	EW2401403-001	EW2401403-002	EW2401403-003	EW2401403-004	EW2401403-005				
				Result	Result	Result	Result	Result				
EA005P: pH by PC Titrator		4										
pH Value		0.01	pH Unit	7.20	7.64	6.80	6.74	7.05				
EA010P: Conductivity by PC Titrator												
Electrical Conductivity @ 25°C		1	μS/cm			1590	1520	2820				
EA025: Total Suspended Solids dried at	104 ± 2°C	-1										
Suspended Solids (SS)		5	mg/L	25	26							
EK055G: Ammonia as N by Discrete Ana	alvser	4										
Ammonia as N	7664-41-7	0.01	mg/L	0.13		<0.01	0.23	0.47				
EKOEGO: Nitrito plus Nitrato as N (NOv)	EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser											
Nitrite + Nitrate as N	by Discrete Ana	0.01	mg/L	32.2		<0.01	0.05	0.30				
			9									
EK061G: Total Kjeldahl Nitrogen By Dise Total Kjeldahl Nitrogen as N	crete Analyser	0.1	mg/L	7.2	<u></u>	0.3	0.7	1.2				
			IIIg/L	1.2		0.3	0.7	1.2				
EK062G: Total Nitrogen as N (TKN + NO	x) by Discrete Ar											
^ Total Nitrogen as N		0.1	mg/L	39.4		0.3	0.8	1.5				
EK067G: Total Phosphorus as P by Disc	rete Analyser	a .										
Total Phosphorus as P		0.01	mg/L	7.65		0.01	0.04	0.54				
EP030: Biochemical Oxygen Demand (B	OD)											
Biochemical Oxygen Demand		2	mg/L	<2		<2	<2	<2				
MW006: Thermotolerant Coliforms & E.o.	oli by MF	4										
Escherichia coli		1	CFU/100mL		<1							
Faecal Coliforms		1	CFU/100mL	22		78	970	1600				
MW023: Enterococci by Membrane Filtra	ation	4										
Enterococci		1	CFU/100mL			~8	2400	71				
EP020CA: Oil and Grease Oil and Grease		1	mg/L	<1								
On and Grease		'	IIIg/L	~1								

Page : 4 of 6
Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

Analytical Results

		Sample ID	884/GW1	884/GW2	884/GW3	884/GW4	884/GW5
	Sampli	ng date / time	25-Mar-2024 00:00	25-Mar-2024 00:00	25-Mar-2024 00:00	25-Mar-2024 00:00	25-Mar-2024 00:00
CAS Number	LOR	Unit	EW2401403-006	EW2401403-007	EW2401403-008	EW2401403-009	EW2401403-010
			Result	Result	Result	Result	Result
	0.01	pH Unit	6.03	5.70	5.36	5.51	5.59
	1	μS/cm	1710	1210	1160	1550	1070
Analyser							
7664-41-7	0.01	mg/L	0.09	0.08	0.09	0.12	0.02
x) by Discrete Ana	lyser						
	0.01	mg/L	0.07	0.01	0.02	0.07	0.22
iscrete Analyser							
	0.1	mg/L	0.5	0.4	0.5	0.8	0.6
NOx) by Discrete Ar	nalyser						
	0.1	mg/L	0.6	0.4	0.5	0.9	0.8
iscrete Analyser							
	0.01	mg/L	0.02	0.04	0.06	0.06	0.04
(BOD)							
	2	mg/L	<2	<2	<2	<2	<2
E.coli by MF	i i						
	1	CFU/100mL	55	240	220	96	74
Itration							
	1	CFU/100mL	~2	~1	<1	~1	94
	Analyser 7664-41-7 In provided the state of	CAS Number LOR	Sampling date / time	Sampling date / time 25-Mar-2024 00:00	Sampling date / time 25-Mar-2024 00:00 25-Mar-2024 00:00 CAS Number LOR Unit EW2401403-006 EW2401403-007 Result Result	Sampling date / time 25-Mar-2024 00:00 25-Mar-2024 00:00	Sampling date / time 25-Mar-2024 00:00 2

Page : 5 of 6
Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

Analytical Results

Sub-Matrix: WATER			Sample ID	884/GW6	Influent		
(Matrix: WATER)			Campio 12	004/GVV0	iiiiueiit	 	
		Sampli	ng date / time	25-Mar-2024 00:00	25-Mar-2024 00:00	 	
Compound	CAS Number	LOR	Unit	EW2401403-011	EW2401403-012	 	
				Result	Result	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	5.68	7.93	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	1060		 	
EA025: Total Suspended Solids dried a	at 104 ± 2°C						
Suspended Solids (SS)		5	mg/L		138	 	
EK055G: Ammonia as N by Discrete A	nalyser						
Ammonia as N	7664-41-7	0.01	mg/L	0.05	64.5	 	
EK059G: Nitrite plus Nitrate as N (NO)	() by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	0.22	0.92	 	
EK061G: Total Kjeldahl Nitrogen By Di	screte Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.8	75.4	 	
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete Ar	alyser					
^ Total Nitrogen as N		0.1	mg/L	1.0	76.3	 	
EK067G: Total Phosphorus as P by Dis	screte Analyser						
Total Phosphorus as P		0.01	mg/L	0.04	12.9	 	
EP030: Biochemical Oxygen Demand (BOD)						
Biochemical Oxygen Demand		2	mg/L	<2	<2	 	
MW006: Faecal Coliforms & E.coli by M	NF	3		1			
Faecal Coliforms		1	CFU/100mL		3000000	 	
Escherichia coli		1	CFU/100mL		2800000	 	
MW006: Thermotolerant Coliforms & E	.coli by MF						
Faecal Coliforms		1	CFU/100mL	88		 	
MW023: Enterococci by Membrane Filt	ration						
Enterococci		1	CFU/100mL	76		 	
EP020CA: Oil and Grease							
Oil and Grease		1	mg/L		4	 	

Page : 6 of 6 Work Order : EW2401403

Client : Ingenia Holidays Merry Beach
Project : Merry Beach Monitoring March 2024

Inter-Laboratory Testing

Analysis conducted by ALS Canberra, NATA accreditation no. 992.

(WATER) EP020CA: Oil and Grease

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EA005P: pH by PC Titrator

(WATER) EP030: Biochemical Oxygen Demand (BOD) (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) MW006: Thermotolerant Coliforms & E.coli by MF

(WATER) EK067G: Total Phosphorus as P by Discrete Analyser

(WATER) EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser

(WATER) EK061G: Total Kjeldahl Nitrogen By Discrete Analyser

(WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

(WATER) EA025: Total Suspended Solids dried at 104 ± 2°C

(WATER) EA010P: Conductivity by PC Titrator (WATER) MW023: Enterococci by Membrane Filtration (WATER) MW006: Faecal Coliforms & E.coli by MF

Start Date: 26/2/24

Finish Date: 3/3/24

Day of Week	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Time of Readings	26-2-24	27/2/24	11.25	11.00	11.23	9:15	11.10
eter 1 Reading MAGFLOW	1105	002881	5054	5075	5075	5083	5157
(L) Meter 2 Reading	19377	19377	19317	19317	19377	19377	19377
(KL) - Non- Potable RU Meter 3 Reading	105 935	105935	105993	105993	105993	105993	105993
(KL) – Irrigation Meter 4 Reading	37952	37952	37952	37952	37952	37952	37952
(KL) – NPWS Meter 5 Reading	27398	27398	27398	27398	27398	27 398	21398
(KL) - DLWC Pump Well Effluent	CLEAR	CLEAR / CLOUDY / GREY	CLEAR / CLOUDY / GRE				
Appearance STP Status	/CLOUDY/GREY	OK / ALARMED	OK / ALARMEI				
UV Lamp Status	OK / ALARMED	OK / ALARMED	OK / ALARMED	OK / ALARMED	OK / ALARMED	OK / ALARMED	OK / ALARMEI
Chlorination System Status	OK / FAULTY	OR / FAULTY	OK / FAULTY	OK / FAULTY	OK / FAULTY	K / FAULTY	OK / FAULT
Irrigation Field Status	OK / WET / PONDING	OK / WET) /	OK / WET / PONDING	OK / WET / PONDING			
Weather Conditions	SUNNY / CLOUDY	SUNNY / CLOUDY	SUNNY / CLOUDY / RAIN	SUNNY) CLOUDY / RAIN	SUNNY / CLOUDÝ / RAIN	SUNNY / CLOUDY RAIN	SUNNY CLOUI / RAIN
Dissolved Oxygen in IDEA	10·46	10.46	10-3	10.10	9-56	8.2	9.9
reactor (mg/L) pH in IDEA reactor / Effluent		7.86	7-9/7-9/7-7	7-2/17-17-5	7-9/25/7-5	7.6,7.5,7.5	7.6/7-617-8
PW Total Alkalinity in IDEA Reactor (mg/L)	1,10		3-70 Mg/L		240 mg/L		
30 minute sludge volume (%)		45%			45%		
Chlorine (residual) onsite testing Eff2 (once per week)					0.02	2/1	2 H2 /
Initials	BAC	(In	MW	iw	Man	RY	Mu

Start Date: 4.3.24

Finish Date:

te:	10/3/24

tart Date: 4・3・2つ			i illisti Dato.	10/0/09			KATININ SIN TAN
Day of Week	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Time of Readings	4.3.24	7:13	11-15	10 = 54	15.15	9:00	9:45
Meter 1 Reading MAGFLOW	5261	5285	5303	5331	5364	5392	5451
(L) Meter 2 Reading	019378	019378	019378	0(9138	019738	19 378	19378
(KL) – Non- Potable RU Meter 3 Reading	106212	106283	106290	106356	106429	106 429	106559
(KL) – Irrigation Meter 4 Reading	037952	037952	031952	031452	031952	37952	31952
(KL) – NPWS Meter 5 Reading		627398	027398	027398	027398	27398	27 398
(KL) - DLWC Pump Well Effluent	CLEAR / CLOUDY / GREY	CLEAR / CLOUDY / GREY	CLEAR / CLOUDY / GREY	CLEAR / CLOUDY / GREY	CLEAR / CLOUDY / GREY	/ CLOUDY / GREY	CLEAR / CLOUDY / GREY
Appearance STP Status	OK) / ALARMED	68 / ALARMED	OK / ALARMED				
UV Lamp Status	OK / (ALARMED)	OK / ALARMED	OK / ALARMED	OK / ALARMED	(ALARMED)	OK / ALARMED	OK ALARMED
Chlorination System Status	OK / FAULTY	OB / FAULTY	OR / FAULTY	OK / FAULTY	OK / FAULTY	OK / FAULTY	OK / FAULTY
Irrigation Field Status	OK / WET / PONDING						
Weather Conditions	SUNNY / CLOUDY / RAIN	SUNNY / CLOUDY / RAIN	SUNNY / CLOUDY / RAIN	SUNNY / CLOUDY / RAIN	SUNNY / CLOUDY / RAIN	SUNNY / CLOUDY / RAIN	SUNNY / CLOUD / RAIN
Dissolved Oxygen in IDEA	9.43	9.72	10.56	10-36	10-74	9,86	9.36
reactor (mg/L) pH in IDEA reactor / Effluent PW	7.	7-78 175/24	7.8/7.577.8	7.9/7.4/7.6	7-9/2-47-7	7.8/7.4/7,5	7.6/7.5/7.
Total Alkalinity in IDEA Reactor (mg/L)							
30 minute sludge volume (%)	45%	43%		55%			
Chlorine (residual) onsite testing Eff2 (once per week)					10./	nul	PU
Initials	M.I	Cm	MW	NW	Me	py	l Py

Start Date: //-03-24

Finish Date: 17324

Day of Week	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Time of Readings	11:30	8:25	10.37	09-38	9:00	10:30	12-15An
Meter 1 Reading MAGFLOW (L)	5517	2881	5567	5584	5602	3902	5602
Meter 2 Reading (KL) – Non- Potable RU	019377	019377	019377	019377	019377	19 377	19377
Meter 3 Reading (KL) – Irrigation	106632	106707	106107	106747	106747	106747	106 747
Meter 4 Reading (KL) – NPWS	037952	037952	031952	031952	037952	037 952	037952
Meter 5 Reading (KL) - DLWC	027396	027398	021398	027398	027398	27398	27398
ÇPump Well Effluent Appearance	CLEAR / CLOUDY / GREY						
STP Status	OK / ALARMED	OK / ALARMED	Ø₿/ ALARMED	OB / ALARMED	OK / ALARMED	OK / ALARMED	OK / ALARMED
UV Lamp Status	OK / ALARMED	OK / ALARMED	OK / ALARMED	OK / ÁLARMED	OK / ALARMED	OK / ALARMED	OK / ALARMED
Chlorination System Status	OK / FAULTY						
Irrigation Field Status	OK / WET) PONDING	OK / WEP / PONDING	OK / WET / PONDING	OK / WET / PONDING	OK / WET Y	OK / WET / PONDING	OK / WET
Weather Conditions	SUNNY) CLOUDY RAIN	SUNNY / CLOUDY / RAIN	SUNNY / CLOUDY / RAIN	SUNNY / CLOUDY / RAIN	SUNNY / CLOUDY	SUNNY / CLOUDY RAIN	SUNNY LCLOUDY RAIN
Dissolved Oxygen in IDEA reactor (mg/L)	10.33	8.95	10-15	9.73	9-05	9.99	9.63
pH in IDEA reactor / Effluent PW	7.61	7.811	7-9/7-317.5	3.0/7.3 17.7	8-0/7,4/7-7	8.2/7.4/7.7	8.1.75.7.11
Total Alkalinity in IDEA Reactor (mg/L)						0.27111111	01,10,14
30 minute sludge volume (%)	509	65%	N.	55%			
Chlorine (residual) onsite testing Eff2 (once per week)			11			No.	• 02
Initials	BR	PS	M	IW	ner	BSC	B/

Start Date:

18.3.24

Finish Date:

24.2.28

Day of Week	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Time of Readings	10:07	8.05 am	11-15am.	9-00am	1100	7:40	
Meter 1 Reading MAGFLOW (L)	5794	5732	5761	5778	5125		9:00
Meter 2 Reading (KL) – Non- Potable RU	019 377	019377	019377	0/9377	19377	5866	19377
Meter 3 Reading (KL) – Irrigation	106746	106747	10 6 7/17	106 747	106747		
Meter 4 Reading (KL) – NPWS	077952	037952	037952	037952	37952	37952	37952
Meter 5 Reading (KL) - DLWC	027398	027398	027398	021398	27 378	27 398	27 398
Pump Well Effluent Appearance	CLEAR / CLOUDY / GREY	CLEAR / CLOUDY GREY	CLEAR / CLOUDY / GREY	CLEAR / CLOUDY/GREY	CLEAR / CLOUDY / GREY	CLEAR	CLEAR
STP Status	OK / ALARMED	OK / ALARMED	OK ALARMED	(OK) / ALARMED	OK / ALARMED	/ CLOUDY / GREY OK / ALARMED	/CLOUDY/GREY OK / ALARMED
UV Lamp Status	OK / ALARMED	OK / ALARMED	OK / ALARMED	OK (ALARMED)	OK / ALARMED	OK (ALARMED)	(ALARMED)
Chlorination System Status	OR / FAULTY	OK) / FAULTY	OK FAULTY	OK / FAULTY	OK / FAULTY	OK) / FAULTY	OK / FAULTY
Irrigation Field Status	OK / WED / PONDING	OK / WET / PONDING	OK / WET / PONDING	OK / WET /	OK WET / PONDING	OK (WET)/	OK WET
Weather Conditions	SUNNY / CLOUDY RAIN	SUNNY / CLOUDY RAIN	SUNNY / CLOUDY	SUNNY / CLOUDY	SUNNY / CLOUDY / RAIN	PONDING SUNNY / CLOUDY	PONDING SUNNY CLOUDY
Dissolved Oxygen in IDEA reactor (mg/L)	9.18	8.90	8.98	8-94	8.96	9.16	7 RAIN
pH in IDEA reactor / Effluent PW	8-201	8.01	73174572	7.3716	7.41/75	7.4 17.5	9.30
Total Alkalinity in IDEA Reactor (mg/L)			1, 1,100	7/10	1.77 1.5	1.4 1.3	7.65 17.62
30 minute sludge volume (%)	40 %	40%					
Chlorine (residual) onsite testing Eff2 (once per week)						2.8 mg/L	
Initials	MI	SM	BC	BC	py	PU	PY

Start Date: 25.3.24

Finish Date: 31 (3 (24

art Date: OD, 5. WT							
Day of Week	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Time of Readings	9:00	9.00	9-20	1200	7:00	9:30	9.30
Meter 1 Reading MAGFLOW	7:00	5860	5912	5973	6125	6199	6309
(L) Meter 2 Reading	19377	19377	19377	19377	19377	19 377	19377
(KL) – Non- Potable RU Meter 3 Reading	106747	106747	106747	106747	106747	106747	106747
(KL) – Irrigation Meter 4 Reading	37 952	31452	37952	37952	37982	31 952	37952
(KL) – NPWS Meter 5 Reading	27 398	21398	27398	21398	27398	27398	27398
(KL) - DLWC Pump Well Effluent	CLEAR / CLOUDY / GREY	CLEAR / CLOUDY / GREY	CLEAR CLOUDY) GREY	CLEAR / CLOUDY / GREY	CLÉAR / CLOUDY / GREY	CLEAR / CLOUDY / GREY	/ CLOUDY / GREY
Appearance STP Status	OK ALARMED	OK / ALARMED	OK / ALARMED	OK/ ALARMED	66 / ALARMED	OK / ALARMED	OK / ALARMED
UV Lamp Status	OK ALARMED	OK / ALARMED	OK / ALARMED	OK / ALARMED	OK / ALARMED	OK / ALARMED	OK ALARMED
Chlorination System Status	OK) / FAULTY	OK / FAULTY	OK / FAULTY	OK / FAULTY	OK / FAULTY	OK / FAULTY OK / WET /	OK / FAULTY
Irrigation Field Status	OK / WET /	OK / WET / PONDING	OK / WET / PONDING	OK WET / PONDING	OK / WET / PONDING	PONDING SUNNY CLOUDY	PONDING SUNNY) CLOUD
Weather Conditions	SUNNY CLOUDY RAIN	SUNNY / CLOUDY / RAIN	SUNNY / CLOUDY / RAIN	SUNNY CLOUDY / RAIN	SUNNY CLOUDY / RAIN	7 RAIN	7 RAIN
Dissolved Oxygen in IDEA reactor (mg/L)	9.75	9-19	9.64	9.56	9.66	9.9	9.8
pH in IDEA reactor / Effluent		7-4 17.5	7-20 / 1-36	7.1417.20	7.47.2	7.2 /7.1	7.17.1
Total Alkalinity in IDEA Reactor (mg/L)							
30 minute sludge volume (%)	45%		30%				
Chlorine (residual) onsite testing Eff2 (once per week)	-	9			nid	7	PU
Initials	PY	PY	ow	PY	py	PY	PY